Distinct α-Synuclein Strains Differentially Promote Tau Inclusions in Neurons

نویسندگان

  • Jing L. Guo
  • Dustin J. Covell
  • Joshua P. Daniels
  • Michiyo Iba
  • Anna Stieber
  • Bin Zhang
  • Dawn M. Riddle
  • Linda K. Kwong
  • Yan Xu
  • John Q. Trojanowski
  • Virginia M.Y. Lee
چکیده

Many neurodegenerative diseases are characterized by the accumulation of insoluble protein aggregates, including neurofibrillary tangles comprised of tau in Alzheimer's disease and Lewy bodies composed of α-synuclein in Parkinson's disease. Moreover, different pathological proteins frequently codeposit in disease brains. To test whether aggregated α-synuclein can directly cross-seed tau fibrillization, we administered preformed α-synuclein fibrils assembled from recombinant protein to primary neurons and transgenic mice. Remarkably, we discovered two distinct strains of synthetic α-synuclein fibrils that demonstrated striking differences in the efficiency of cross-seeding tau aggregation, both in neuron cultures and in vivo. Proteinase K digestion revealed conformational differences between the two synthetic α-synuclein strains and also between sarkosyl-insoluble α-synuclein extracted from two subgroups of Parkinson's disease brains. We speculate that distinct strains of pathological α-synuclein likely exist in neurodegenerative disease brains and may underlie the tremendous heterogeneity of synucleinopathies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pathological alpha-synuclein propagates through neural networks

BACKGROUND α-Synuclein is the major component of filamentous inclusions that constitute the defining characteristic of Parkinson's disease, dementia with Lewy bodies and multiple system atrophy, so-called α-synucleinopathies. Recent studies revealed that intracerebral injection of recombinant α-synuclein fibrils into wild-type mouse brains induced prion-like propagation of hyperphosphorylated α...

متن کامل

Age-related appearance of dendritic inclusions in catecholaminergic brainstem neurons.

We identified p62-immunoreactive inclusions in dendrites of catecholaminergic brainstem projection neurons using antibodies against p62, ubiquitin, α-synuclein, hyperphosphorylated tau, and tyrosine hydroxylase in 100-μm sections through the brainstem dorsal vagal area, locus coeruleus, and substantia nigra of 149 autopsy cases staged for intraneuronal Alzheimer's and Parkinson's disease-associ...

متن کامل

Seeded aggregation and toxicity of {alpha}-synuclein and tau: cellular models of neurodegenerative diseases.

The deposition of amyloid-like filaments in the brain is the central event in the pathogenesis of neurodegenerative diseases. Here we report cellular models of intracytoplasmic inclusions of α-synuclein, generated by introducing nucleation seeds into SH-SY5Y cells with a transfection reagent. Upon introduction of preformed seeds into cells overexpressing α-synuclein, abundant, highly filamentou...

متن کامل

Initiation and synergistic fibrillization of tau and alpha-synuclein.

Alpha-synuclein (alpha-syn) and tau polymerize into amyloid fibrils and form intraneuronal filamentous inclusions characteristic of neurodegenerative diseases. We demonstrate that alpha-syn induces fibrillization of tau and that coincubation of tau and alpha-syn synergistically promotes fibrillization of both proteins. The in vivo relevance of these findings is grounded in the co-occurrence of ...

متن کامل

Protein aggregation in the aging retina.

The age-related altered expression of neuron-related proteins as seen in other regions of the central nervous system is expected in the aging retina. Using immunohistochemical techniques, we characterized the distribution and aggregation of tau, βA4-amyloid, α-synuclein, and ubiquitin in human retina obtained from 19 enucleated eyes of patients aged 49 to 87 years and correlated the findings wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 154  شماره 

صفحات  -

تاریخ انتشار 2013